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Operational phase-space probability distributions are useful tools for describing quan-

tum mechanical systems, including quantum communication and quantum information

processing systems. It is shown that quantum communication channels with Gaussian
noise and quantum teleportation of continuous variables are described by operational
phase-space probability distributions. The relation of operational phase-space proba-
bility distribution to the extended phase-space formalism proposed by Chountasis and
Vourdas is discussed.

KEY WORDS: operational phase-space probability; quantum communication chan-
nel; quantum teleportation; Wigner and Weyl functions.

1. INTRODUCTION

The phase-space representations of quantum states of a physical system are
very useful for investigating fundamental problems in quantum mechanics and
guantum optics (Hillengt al,, 1984; Kim and Noz, 1986; Leonhardt, 1997). There
are various kinds of phase-space quasiprobability distributions which describe a
guantum state of a physical system. The Glauber-SudaBtianction (Glauber,
1963a,b; Sudarshan, 1993) is a diagonal representation with respect to the Glauber
coherent states. The Husir@-function (Husimi, 1940; Kano, 1965) is closely
related to the heterodyne detection or the simultaneous measurement of position
and momentum (Leonhardt, 1997). The Wigner function (Hilletyal., 1984;
Wigner, 1932) gives the correct position and momentum marginal probability
distributions and is related to the homodyne tomography (Leonhardt, 1997). The
Glauber-SudarshaR-function becomes singular for a nonclassical state such as
the Fock state. These functions are special cases of the generalized phase-space
functions (Agarwal and Wolf, 1970a,b,c; Cahill and Glauber, 1969a,b), which
are called thes-ordered phase-space functions. The variety of the phase-space
functions is due to the noncommutativity of quantum mechanical operators.
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When the effects of a measurement apparatus, which interacts with a physical
system to obtain some information, are taken into account, the operational phase-
space probability distributions (Ban, 1997;Zaket al, 1995; Wodkiewicz, 1986)
are derived. The operational phase-space probability distribution reduces to the
Husimi Q-function if a measurement apparatus is prepared in a vacuum state.
There are other possibilities of introducing phase-space formulation of quantum
mechanical systems. In fact, Chountasis and Vourdas (Chountasis and Vourdas,
1998a,b) have considered the absolute square of the Wigner and Weyl functions and
they have proposed the extended phase-space formulation of quantum mechanical
systems.

In this paper, we give several properties of the operational phase-space proba-
bility distributions and show that the operational phase-space probability distribu-
tionis a useful tool for investigating quantum communication systems. In Section 2,
we briefly review the basic properties of the operational phase-space probability
distributions. In Section 3, we show that an output state of a quantum communi-
cation channel with Gaussian noise is described by the operational phase-space
probability distribution. In Section 4, we find that the quantum teleportation of
continuous variables via a two-mode squeezed-vacuum state is investigated by the
operational phase-space probability distribution. In Section 5, we discuss the rela-
tion between the operational phase-space probability distribution and the extended
phase-space formalism by Chountasis and Vourdas. In Section 6, a summary is
given.

2. OPERATIONAL PHASE-SPACE PROBABILITY DISTRIBUTION

This section briefly reviews the basic properties of the operational phase-space
probability distributions (Ban, 1997; Beket al., 1995; Wodkiewicz, 1986). The
operational phase-space probability distribufidiir, k; o, 6) of a quantum state
p of a physical system is given by

WIt, k; p, 6) = % Tr[pD(r, K)D1(r, k)], (2.1)

whereD(r, k) is the displacement operator,
D(r, k) = expli (kk — rp)] = expa’ — u*d), w=( +ik)/v2, (2.2)

and the statistical operaterrépresents a quantum state of a quantum rulez¢Bu”™

et al, 1995) or a reference system (Ban, 1997), which includes the effects of a
measurement apparatus. In particular, if the quantum ruler is in a vacuum state
6 = |0)(0], the operational phase-space probability distribution reduces to the

Husimi Q-function. It is easy to see that the operational phase-space probabil-
ity distribution satisfies the symmetric relatiovi(—r, —k; p, &) = WI(r, k; , p).
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In some cases, the operational phase-space probability distribution is derived by
considering the simultaneous measurement of position and momentum of the phys-
ical system (Ban, 1997).

The operational phase-space probability distribution can be expressed as the
convolution of thes-ordered quasiprobability and-6)-ordered quasiprobability
(Cahill and Glauber, 1969a,b). In particular, we obtain

wlr, k;,s,&):/oo dx/oodp P(X+r1, p+k; 0)Q(X, p;5)
:/w dx/oodp QX +r1, p+k; p)P(x, p;5)

= foo dx/oo dp WX +r1, p+ Kk, p)W(X, p;5), (2.3)

where P(x, p; p), Q(X, p; p), and W(x, p; o) are the Glauber-Sudarshadh
function, the HuisimiQ-function, and the Wigner function of the quantum state ~
respectively. Since following relations are satisfied

%/wdkﬁ(r,k)mjf(r,k):/wdx(x_r|5|x_r)|x><x|, (2.4)

1 [® 4 A 00
Z'/_wer(r, k)é’DT(I’, k)Z/Lwdp(p—k|6'|p—k)|p><p|’ (2.5)

the operational phase-space probability distribution has the marginal distributions
given by

W(r;p,6) = /;oo dkw(r, k; p,6) = /;OO dxf(x —r){x|p|x), (2.6)

W(k;ﬁ,6)=[ er(r,k;ﬁ,(}):[ dpfk— p)(pIplp),  (2.7)

where f (x) = (x|6|x) andg(p) = (p|6|p) correspond to the filter functions of
the measurement apparatus.

The operational phase-space probability distributio(r, k; p, &) given by
Eqg. (2.1) is expressed as

WA, K; ,6) = Tr[pM(r, K, (2.8)
where the operatofM(r, k) = (27)~1D(r, k)3 DI(r, k) is a positive operator-
valued measure defined on the Hilbert spacef the system, which satisfies

M(r, k) > 0, /w dr/oodkM(r,k)zi. (2.9)



1086 Ban

Note that the operatQM(r, k) is not a projector. Let us introduce an auxiliary
Hilbert spaceH, and define a statistical operator by the relation,

6a=/ dX/ dylx)a[(ylo[x)]alyl- (2.10)

We denote all of the quantities in the auxiliary Hilber spa¢gby adding the
subscript “a.” We further introduce a vector belonging to the tensor product Hilbert
spaceH ® Ha,

|y (r,K) = «/%_n /:dx|x + 1) ® |X)a expikx). (2.11)

Thenwe find that the operational phase-space probability distribdtienk; o, &)
can be expressed as (Ban, 1999)

W(r, K p,6) = TrTra(p ® 6)N(r, K)], (2.12)

where the operato/f/(r, K) = | (r, K)) (v (r, K)| is a projection-valued measure of
continuous spectrum,

N(r, k) > 0, foo dr/oodkj\“/(r,k)=i®ia, (2.13)

N, N, K) =8 —r)8(k — K)N(r, K). (2.14)

Therefore the projection-valued measuré(r,k) is the Naimark exten-
sion of the positive operator-valued meaSJA}E(r, k) and the statistical operator

04 is the Naimark state (Holevo, 1982). Since the state vegtr, k)) is the si-
multaneous eigenstate &f® 1, — 1® %, and p® 1+ 1® pa, the projection-
valued measureV(r, k) describes the quantum measurement process of these
quantities, which is implemented by the heterodyne detection (Leonhardt,
1997).

Before concluding this section, we consider the quantum measurement of po-
sition and momentum of a physical system. hgtfidp,, be statistical operators of
initial quantum states of two measurement apparatus, which respectively measure
the position and momentum of the physical system. Suppose that the interaction
Hamiltonian between the physical system and the measurement apparatus is given
by (Ban, 1997; Braunsteiet al., 1991)

Hit = 9X @ Pa® 1o+ P ® 1a® Po). (2.15)

After the interaction, we read the values exhibited by the two measurement appa-
ratus. Then the joint probability distribution that the position and momentum of
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the physical system take the valuesndk is given by the operational phase-space
probability distributionV(r, k; p, 6) (Ban, 1997). In this case, the quantum ruler
state is given by

s=gr [ ox[ ov[ ax[ o
x T(X, Y)T (X, Y)al—XIal — X Vab(—=YIBpl — Y )b, (2.16)

where the operator (x, y) is the Fourier transformation of the displacement op-
eratorD(X, y),

T(x,u) = i/ olu/oo dv D(v, u) exp[—i(ux — vy)]. (2.17)

2
Therefore we have seen that the operational phase-space probability distribu-
tion describes the simultaneous measurement of position and momentum of the
system.

3. COMMUNICATION CHANNELS WITH GAUSSIAN NOISE

In this section, we show that the operational phase-space probability distri-
bution characterizes an output state of a quantum communication channel with
Gaussian noise. Suppose a quantum communication channel under the influence
of Gaussian noise. When an input quantum state of a signal for this channel is
given by the statistical operatpf,, the output quantum state of the signal (Hall,
1994) is described by the statistical operator,

o= [ CEPED! (B)5aD(B), (3.1)
whereg = B, + i, d?8 = dB.dBi, andD(B) = D(x, p) is the displacement op-

erator with = (x +ip)/~/2. In this equationP(8) represents the probability
distribution of the complex amplitudg, which satisfies

P(B) = O, / d?pP(p) = 1. (32)

If the Gaussian noise is caused by the environmental system in the thermal equi-
librium state, the probability distributioR(8) is given by (Vourdas, 1988)

1
n

P(5) = = exp( -2 ), (3.3)

wheren is the average value of the photon number of the thermal noise.



1088 Ban

We now calculate the Husin@-function of the output quantum statg,,; of
the signal. We obtain from Eq. (3.1)

A 1 .
Qa; pou) = —(@|Pouda)
T

1 f dBP(B) (I (B)3nD(B)la)
T

1 [;am f dzﬂP(ﬂ)ﬁ(ﬂ)la)(alﬁT(ﬂ)}
T

%Tr [ﬁmb(a)< / d?p P(ﬁ)lﬁ)(ﬂl) Df (a)}

> Tl B(@)ér B (@] 34
with
6o — / 2P (B)IB) (B, (35)

whichis a statistical operator having a nonnegative Glauber—Suddpshanttion.
WhenP(B) is given by Eq. (3.3)gp becomes the thermal equilibrium state,

1 & no\"
op = = ( _> [n)(nl. (3.6)
1+n&=\1+n

By using position and momentum variablesand p, the HusimiQ-function is
expressed as

1 A A
QX Pi Pou) = 5 Trloin D(X, P)op DY(x, p)] = W(X, P; pin, Gp),  (3.7)

where we have taken account into the fact that (x + ip)/+/2. Thus the Husimi

Q-function of the output state,;; of the guantum communication channel with the
Gaussian noise is nothing but the operational phase-space probability distribution.

Note thafy quantum statg i5 expressed in terms of the Husi@ifunctionQ(«; p)
(Agarwal and Wolf, 1970a,b,c)

p=1 [ [ @ Qin) exp(%W e+ ﬁa*> B).  (38)

Thus it is found from Eqgs. (3.4) and (3.8) that the output state of the quantum
communication channel is completely determined by the operational phase-space

probability distribution.
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The operational phase-space probability distribution of the output quantum
state with a quantum ruler stateis calculated as follows:

W@ o 8) = = THpouD(@)3 B (@]

or [ 8P THpn Bl + 13O + )

- / BP(B — )W (B: . 6), (3.9)

witha = (X +ip)/+/2 andg = (X’ + ip’)/~/2. Thus the quantum communication
channel with the Gaussian noise transforms the operational phase-space probabil-
ity distributionW(«; p;,, 6) of the input state into the convolution ¥ («; oy, 6)

with the noise distributio? («). The result of this section indicates that the opera-
tional phase-space probability distribution describes the quantum communication
system in which the quantum-state signal is sent through the channel with the
Gaussian noise.

4. QUANTUM TELEPORTATION OF CONTINUOUS VARIABLES
4.1. Quantum Teleportation

The quantum teleportation of continuous variables can transmit any sin-
gle mode optical state from Alice to Bob who share, in advance, a two-mode
squeezed-vacuum state, by sending from Alice to Bob the outcomes of a simulta-
neous measurement of position and momentum performed by her (Braunstein and
Kimble, 1998; Milburn and Braunstein, 1999). The two-mode squeezed-vacuum
state| W4%) shared by Alice and Bob is given by

|wAP) = explr (a7bT — ah)]|0*) ® |0°)

:\/1—AZZ)\“|nA>®|nB), (4.1)

n=0

wherex = tanhr and @, a') and () BT) are annihilation and creation operators of
the mode A and B, angh®) and|nB) are their number eigenstates. The mode A is
assigned for Alice and the mode B for Bob.

Suppose that Alice has an unknown quantum stafe to be teleported to
Bob, where a quantum stat¢©) is expanded in terms of position eigenstates
|xC) as

W) = /_w dx Y (x)]xC). .2)



1090 Ban

Then the quantum state of the total systeryiS) ® |W4%). Note that the mode

A and C are at Alice’s side and the mode B at Bob’s side. To teleport the un-
known quantum state/ ) to Bob, Alice performs the simultaneous measurement
of position and momentum of the mode A and C that is described the projection
operatorXAS(x, p) = |®C(x, p)) (P C(x, p)|, where|®AC(x, p)) is the simulta-
neous eigenstate @ — XA and p¢ + p* with eigenvalues andp,

1 o0
|DAC(x, p)) = —271/ dy|x© + y©) ® |y*) exp(py). (4.3)

After Alice have obtained the measurement outcormepy, the quantum state of
the total system becomex? QT )(|\If ) ® |¥©)/VPX, p), whereP(x, p)
is the normalization constant which represents the probability of the measurement
outcome X, p).

Alice sends the measurement outcomeq) to Bob by means of some classi-
cal communication channel. After receiving the measurement outcome, the quan-
tum state of the mode B held by Bob becomes

1B, p))
lvB(x, p)) = , (4.9
VB, pIYB(X, p))

where the unnormalized statg®(x, p)) is given by

78(x, p) = [ dy[ d2G.z yW(x +y) e ™E).  (45)

The kernel functiorG, (z, y) is given by

Gz = 5 o5 (155 ) =¥ -3 (157 ) @+ v

_ 1 IR PN S S 2
_nﬂexp[ 4e2(z y) 7€ (z—r—y)], (4.6)

which satisfies the relations
o0 o0 o0 o0 1
[ ay[ aze@y=vz [ a4y ade@nr=,. @

Then Bob applies the unitary oper::xte'\@?B ande—**° and he finally obtained the
quantum state*P°&P*®|y:(x, p)). It is easy to see that in the strong squeezing
limit (A —> 1 orr — o0), Bob’s quantum state is identical with the unknown
guantum state that Alice wanted to send, that is,

ygwle*ixps &Py B(x, p)) = f " dx g 1) = [v8). (4.8)
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For the finite strength of the squeezing, the teleported quantumes‘ﬂ'?;‘d?’éei px®

[vB(x, p)) is not equal to the original quantum state?) because of the incom-

pleteness of the quantum entanglement of the two-mode squeezed-vaccum state.
The difference between two quantum states, |g:g. and|v,), is measured

by the fidelity F = |(y1 | ¥2)|?. Since Bob obtained the quantum staté*?

ePX | y(x, p)) with probability (¥(x, p) | ¥(x, p)), the average value of the

fidelity F is calculated as

F=/ dx/ dp(yr(x, p) | ¥ (x, Py le P ePX|y(x, p))l?

- / dx f dpl(yle P €P% 1 (x, p))IZ, (4.9)

where the superscript “B” has been omitted since all the quantities are for Bob and
there is no confusion. To proceed further, we rewrite Eq. (4.5) into

1W(x, p) = T, e PX*Ply), (4.10)
where the operatoﬁ is given by

ﬁ=/ dyf dz|2)G;.(z, y)(yl, (4.11)

which is expressed in terms of the Fock states,

T, = 1-22 Ook”n n (4.12)
=4/ o= Z::O Iny(n|. :

The operatoD(x, p)7; DT (x, p) is called the transfer operator (Hofmaenal.,
2000). Substituting Eqg. (4.10) into Eq. (4.9), we obtain the average value of the
fidelity in the continuous variables teleportation,

F=/ dxf dpl(¥1B(x, P BT (x, p)v)I2

_ / dx / dpi(y B (x, Py B(x, p)v) 2. (4.13)

For example, whehy) is the Glauber coherent stgte), the average value of the
fidelity becomed= = (1 + 1)/2 (Hofmannet al,, 2000).

4.2. Operational Phase-Space Probability Distribution

We consider the operational phase-space probability distribution in the con-
tinuous variables teleportation. For given measurement outcenmg,(after ap-
plying the unitary transformatioB(x, p), the teleported quantum stadg.(x, p)
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obtained by Bob can be expressed as
A(Xv p)ﬁinAT(X, p)
TILAT(X, P)A(X, P)Pinl

where the statistical operatex, Tepresents the original quantum state and the
operatorA(x, p) is given by

ﬁout(xv p) = (4-14)

Ax. ) = B0 MABIx, ), A= [ dx [ dpacy, (315
which satisfies the normalization condition
/ dxf dpAf(x, p)A(x, p) = 1. (4.16)

Note that Eq. (4.14) is valid for both pure and mixed quantum gtateSince the
measurement outcome, (p) is obtained with probability

P(x, p) = THAT(x, p)A(X, P)in], (4.17)
the averaged output stgtg,, of Bob becomes
pou= [ _dx [ dpAGc, MonAl(x, p). (4.18)

Thus we have found the completely positive map representation, Egs. (4.14) and
(4.18), of the continuous variables teleportation.

The probabilityP(x, p) that the measurement outconxe p) is obtained by
Alice is nothing but the operational phase-space probability distribution. In fact,
the probabilityP(x, p) can be written in the following form:

PO, D) = 5 T, P)3 D (x, )l (419)

where the quantum ruler stateis given by
6 =2nATA= 271/ dx/ dy G(x, y)Ix){(yl, (4.20)

with

G'(x,y) = oxp| (& + e )x -y

1
7/ 2m(e% +e )
- m(x + y)Z]. (4.21)

Itis easy to see from Egs. (4.7) and (4.15) that 0 and Te" = 1. The probabil-
ity P(x, p) approaches to the uniform distribution as the squeezing parameter is
sufficiently large.
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We next show that the average value of the fidelity between the original and
teleported quantum states is expressed in terms of the operational phase-space
probability distribution. Let us introduce the operational probability distribution
of the original quantum state;,"= |vin) (¥in| in which the teleported quantum
state o5, (X, p) before performing the unitary transformatid(x, p), that is,

Ao, p) = DT(X, p)Aou(X, P)D, is used as the quantum ruler state,

Weellr, K) = % TID(r, K)Apu(X, PYDT(r, K)pin]- (4.22)

Then it is found from Eq. (4.13) that the average value of the fidelity of the
continuous variables teleportation is expressed as

F =27 /oo dx/oo dpWiel(x, p)P(X, p), (4.23)

where P(X, p) is the probability that Alice obtains the measurement outcome
(X, p). Therefore, it has been shown that the quantum teleportation of continu-
ous variables is described by means of the operational phase-space probability
distribution.
5. WIGNER-WEYL FUNCTION AND EXTENDED PHASE SPACE
5.1. Wigner and Weyl Functions

The Wigner functionN(x, p; p) of a quantum state 6f a physical system is
defined in the several ways. For example, we have the following expressions:

1 [ 1 1 .
W(X, p; p) = —f dX<x+ §X|’6|X — —X> exp(=ipX)

27 J_o 2
1 [ 1. 1
=5 _OOdP<p+ §P|'O|p_ §P> expiPx)
1 .
= —Trpu(x, pl. (5.1

where|x) and| p) are the eigenstates of position and momentum operatansd
p. In this equation, the unitary operatd(x, p) is given by

U(x, p) = D(x, pUoDT(x, p), (5.2)

whereD(x, p) = € (P*P js the displacement operator adg is the parity oper-
ator defined by

Uo = exp[%in()"(z + p? — 1)}, (5.3)

which satisfies the relatiodoD(x, p)U} = D(—x, —p) = Df(x, p).
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The Weyl functionW(X, P; 5) of a quantum statg 6f a physical system is
defined as

W(W, P;ﬁ):/ dx<x+%X|,6|x—%X> exp(iPx)

o0 1. 1
=f dp<p+§P|p|p—§P>exp6pX)

_1 TrAD(x, ), (5.4)
T

which is the Fourier transformation of the Wigner functgx, p; o),
Wox,Pio) = [ dx [~ dpWix, pid) expli(Px— pX). (59

The Weyl function satisfies the relation®(0, 0;5) = 1 and W(X, P; p) =

Chountasis and Vourdas have introduced the following quantities (Chountasis
and Vourdas, 1998b) to formulate the extended phase-space description of a quan-
tum system,

(F (X P p) = 27 / dx / dp F(x, pIW(x, P2 (5.6)

1 oo oo -
(G(X, PMHx,py = E/ dX/ dP G(X, P)|W(X, P)|?, (5.7)

whereF (x, p) andG(x, p) are some analytic functions afand p. Using these
gquantities, they have discussed the uncertainty relations in the phase space. The
uncertainty relations in the—p—X—P phase space are given by

1 1
§Xsp > éTr[Z»Z], SX8P > ETr[@Z], (5.8)

where §X(§P) and sx(sp) are the fluctuations calculated respectively by
IW(X, P)|2 and W(x, p)]2. The properties ofW(X, P)|2 and W(x, p)]2 have
beeninvestigated in detail by Chountasis and Vourdas (1998a). However, the phys-
ical meaning of the quantities calculated|BY(X, P)|2 and W(x, p)]? are not so

clear. Therefore we will show that these quantities are related to those calculated
by the operational phase-space probability distribution.

5.2. Wigner-Weyl Function in the Extended Phase Space

To investigate the relation of the extended phase-space quantities to the oper-
ational phase-space probability distribution, we introduce a Fourier transformation
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WI(r, k; p, 6) of the operational phase-space probability distributioqm, k; 5, &),

W(r, k; p, 6) = /;OO dr /_OO dkwi(r, k; p, &) exp[—i(Kr — RK)] (5.9

W(r, k; p, ) = (2—;2 /jc dr/jo dkW(R, K: p, &) expl—i (Kr — RK)].

(5.10)
Substituting Eq. (2.3) into Eq. (5.9), we obtain
W(R, K; 5, 6) = W(R, K; p)W*(R, K;3)
= W(R, K; p)W(=R, —K;5). (5.11)

For pure statep = |¢) (¥ | andd = |¢){(¢|, the operational probability distribu-
tion and its Fourier transformation become

WK 5,6) = 5= (W1 IO, (5.12)
W(R, K; 4, 6) = (¢|DI(R, K)[¥)(¢| D(R, K)I¢), (5.13)
which is the consequence of the following formula,
% _Zdr /_:dkuwf)(r, K)I¢)|? expl=i (Kr — RK]
= (YIDT(R, K)I¥)(¢ID(R, K)lg). (5.14)

This formula indicates that the quantitwuﬁ(r, K)[v)|? is invariant under the
Fourier transformation. The characteristic function calculated by the operational
phase-space probability distributioti(r, k; o, 5) becomes

(exp[—i (Kr — RK)])op = /_oo dr /_Oo dkw(r, k; p, ) exp[—i(Kr — RK)]

= W(R, K; ))W*(R, K;6). (5.15)

We have obtained the several relations between the operational phase-space prob-
ability distribution and the Weyl function. In the rest of this section, websets
and so we omit the statistical operators in the operational phase-space distribution,
the Wigner function and the Weyl function.

We consider the relation between the operational phase-space probability
distribution W(r, k) and the function \V(x, p)]? |W(X, P)|. It is easy to see
from Egs. (5.10), (5.11), and (5.15)

(exp[—i (Kr — RK)])op = W(R, K)/?, (5.16)
{(expli (Pr — XK))x,p) = 27WV(r, K). (5.17)
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On the other hands, the quantifegxpli (kx — rp)]) x,p) is calculated to be

1 [e.¢] o0 - -
(expl (x = PNy = 5 | 4% [ dPWOX PRI =1, P =9

~ (1 1 ~ (1 1
= Tr[[)D <§r, §k> oD (Er, Ek)}’ (5.18)

where we have used Eq. (5.11). These results show that the quantities calculated by
the squared Wigner and Weyl functions are expressed in terms of the operational
phase-space probability distributions. Thus the extended phase-space formulation
proposed by Chountasis and Vourdas is implicitly related to the quantum measure-
ment process of position and momentum.

6. CONCLUSION

We have shown that the operational phase-space probability distributions
are useful tools for investigating quantum communication systems. It has been
found that the quantum communication channels with Gaussian noise and the
guantum teleportation of continuous variables are described by the operational
phase-space probability distributions. Furthermore the relation of the operational
phase-space probability distribution to the extended phase-space formalism pro-
posed by Chountasis and Vourdas has also been discussed.

Before closing this paper, we consider sierdered quasiprobability distri-
bution F(«, s) of a quantum statg (Agarwal and Wolf, 1970a,b,c),

Fla,s) = 1 Tr[pA(e, S)], /d2a]—'(a, s)=1, (6.1)
b4
where 0< s < 1 and the operatok(«, S) is given by
A 1 20R 1 2 * *
A9 = [ D) expl (s-5) 18— pa" +pa| (62)
The quantum state i3 expressed in terms f(«, s) andA(a, S),

p= f d?aF(a, S)A(a, 1— S). (6.3)

It is easy to see thaf(«, 1), F(«, 1/2), and F(«, 0) become the Glauber—
SudarsharP-function, the Wigner function, and the Husir@i-function. When
we introduce an operatet,”

6s=(1—e*) exp(-ra'a), (6.4)
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wheree™ = —s/(1 — s), thes-ordered quasiprobability distributiof(«, s) can
be expressed in the following form (Chaturvedial,, 1999):

Fla,s) = % Tr{pD(a)6sD ()], (6.5)

which is the same form as that of the operational phase-space probability distri-
bution. However, since the operatgy does not represent any physical state, the
s-ordered quasiprobability distributiaf(«, S) is not a probability distribution.
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